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PRELIMINARY EVALUATION OF THE:POLYNOMIAL AND INTEGRATED MODES 

. 

. 

OF THE GENERALIZED ITERATOR FOR LO1 TARGETING I N  THE RTCC 

By David K.  Banner 

SUMMARY 

A s tudy has been made of  t a rge t ing  t h e  lunar landing mission LO1 
burns by using t h e  in t eg ra t ed  and polynomial modes o f  t he  general ized 
i t e r a t o r .  
genera l ized  i t e r a t o r  f o r  LO1 t a rge t ing  i n  t h e  RTCC. 

The results provide a preliminary eva lua t ion  of  using the  

Both a t t a i n a b l e  cases , i .e.  , the  des i red  nominal variable values t h a t  
can be a t t a i n e d ,  and non-attainable cases ,  i . e . ,  t h e  values can be 
a t t a i n e d  only with t h e  integrated-burn cases , were studied. 

The r e s u l t s  show t h a t ,  given the independent variables, the  conver- 
gence of t h e  i t e r a t o r  becomes more dependent on t h e  independent var iab les  
and t h a t  t h e  f u l l y  optimized mode could be run i n  about 3 minutes as 
compared t o  t h e  polynomial requi r ing  a few seconds. 
t o  p i ck  t h e  cross-product s t e e r i n g  constant  i n  t h e  in t eg ra t ed  modes allows 
g r e a t e r  f l e x i b i l i t y  i n  picking a so lu t ion .  

However, being able 

INTRODUCTION 

To evaluate  using t h e  general ized i t e r a t i o n  i n  t h e  RTCC t o  t a r g e t  
t h e  LO1 burn,  a study has been made of  both t h e  in t eg ra t ed  and polynomial 
burn s imulat ion.  

The independent and dependent a r rays  used are not those  t h a t  w i l l  
be used for RTCC LO1 t a r g e t i n g  s ince  these  a r rays  were not known when 
t h e  s tudy began. The optimize mode w a s  used d i f f e r e n t l y  from i t s  normal 
use (e .g . ,  i n  t h e  midcourse processor) .  Normally t h i s  mode i s  used t o  
drive a variable toward a value t h a t  i s  una t ta inable  (e .g .  , mass a f te r  
TEI t o  a value s e v e r a l  hundred pounds above any phys ica l ly  poss ib l e  
s o l u t i o n ) .  
values  t h a t  a r e  sometimes physical ly  a t t a i n a b l e .  This use of t h e  optimized 
mode i s  expected i n  t h e  RTCC. 

I n  t h i s  s tudy ,  t h e  variable t o  be optimized w a s  dr iven t o  

I n  t h i s  s tudy,  t h e  desired nominal dependent variable values t h a t  
could be a t t a ined  by both t h e  polynomials and the  in t eg ra t ed  burn simu- 
l a t i o n  are termed a t t a i n a b l e  cases .  Cases i n  which t h e  nominal values 
o f  I),, and 'i' could be a t t a i n e d  only by t h e  in t eg ra t ed  burn were re- 

ferred t o  as non-attainable cases .  
LLS 
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This note  assumes the  reader  i s  familiar with t h e  i t e r a t o r ;  conse- 
quently terminology concerning the i t e r a t o r  i s  not def ined.  
about t h e  i t e r a t o r  can be  found i n  references 1 and 2.  

Information 

LO1 

HBO 

xLLS 

+LLS 

yLLS 

YLOI 

AyLoI 

AtlP 

C 

T~~~ 

eN 

AvLoI 

AyN 

LP 0 

RTCC 

SYMBOLS 

lunar  o r b i t  i n se r t ion  

height  of burnout for the  LO1 burn 

longitude of t h e  lunar landing s i t e  

l a t i t u d e  of t h e  lunar  landing s i t e  

azimuth over t h e  lunar landing s i t e  

f l igh t -pa th  angle at s t a r t  of LO1 

plane change during LO1 

elapsed t i m e  from base t i m e  t o  f i r s t  pass over t h e  lunar  
landing s i t e  

cross-product s t ee r ing  constant  

time of i g n i t i o n  f o r  LO1 

t r u e  anomaly a t  the  node 

change i n  ve loc i ty  required f o r  t he  LO1 maneuver 

change i n  azimuth a t  the node ( f o r  impulsive maneuvers, 
same as AYLoI) 

lunar  parking o r b i t  

Real-Time Computer Complex 
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ANALYSIS 

In order  t o  cover the  LO1 problem as comprehensively as poss ib l e ,  
four  nominal t r a j e c t o r i e s  were se lec ted  as t e s t  cases .  These nominals 
have nodes between t h e  approach hyperbola and t h e  lunar  parking o r b i t  
designed t o  occur before ,  a t ,  and a f t e r  per icynthion.  These a r e  descr ibed 
i n  t a b l e  I. 

LO1 c i r c u l a r i z a t i o n  guidance, i n  which t h e  required v e l o c i t y  i s  de- 
f ined  t o  be t h e  c i r c u l a r i z a t i o n  ve loc i ty  a t  t h e  present  r ad ius  t o  the  
spacec ra f t ,  w a s  used f o r  t h e  LO1 burn. This required ve loc i ty  l i es  i n  
a plane defined by the  present spacecraf t  pos i t i on  vec tor  and a t a r g e t  
vec to r .  

The study consis ted of running both s e l e c t  mode and optimize mode 
cases  on t h e  generalized i t e r a t o r  with t h e  four  d i s c r e t e  n o m i n a l t r a j e c -  
t o r i e s  ( t a b l e  I ) .  With independent va r i ab le s  of AT 1pY YLOI, and byLoI f o r  

a eN , AYLoI, c y  and T for t h e  in t eg ra t ed  I G N  t h e  polynominal burn and AT 

burn ( t a b l e s  I1 and 111, respec t ive ly ) ,  t h e  general ized sequence of events 
f o r  t h e  study followed t h i s  pa t te rn .  

F i r s t ,  run each t r a J e c t o r y  i n  %he s e l e c t  mode using t h e  fo l lov ing  
dependent a r ray  : 

C l a s s  I va r i ab le  HBO 

Class I var iab le  

Class I va r i ab le  

F a l l s  out 

+LLS 

LLS A 

"LLS 

Second, run t he  t r a j e c t o r i e s  in  t h e  optimize mode using t h i s  depend- 
ent  a r r ay  : 

Class I HBO 

Class I11 (optimized va r i ab le )  +LLS 

Class I 'LLS 

'LLS Class 11 

Note t h a t  ON and y both define a nodal pos i t i on  on the  approach a 
LO1 

hyperbola. 
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This represents  a type of "one-dimensioned minimum m i s s  a t  t h e  s i t e "  

LLS * 
c r i t e r i a ;  i . e . ,  ob ta in  t h e  cor rec t  A and minimize t h e  m i s s  of  t h e  0 
I n  add i t ion ,  t h e  HBO must be obtained. This r e f l e c t s  t h e  cur ren t  LO1 

philosophy t h a t  t h e  t o p  p r i o r i t y  item i s  t o  obta in  HBO, then minimize 

t h e  m i s s  at t h e  s i t e .  It general ly  requi res  fewer co r rec t ive  maneuvers 
t o  obta in  t h e  plane of  t h e  s i t e  i n  WO than t o  co r rec t  a dispersed HBO. 

LLS 

Third,  change t h e  magnitude of + so t h a t  t h e  i t e r a t o r  cannot g e t  LLS 

LLS . 
Fina l ly ,  run t h e  t r a j e c t o r i e s  with t h e  f i n i t e  burn t o  see how much 

t h e  exact +LLs using t h e  polynomial LO1 s imulat ion;  i . e . ,  optimize + 

can be gained by "freeing up" c.  HBO 

t h e  independent va r i ab le  weights , and t h e  dependent va r i ab le  to le rances  
are shown i n  t a b l e s  I1 and I11 f o r  the  polynomial and in t eg ra t ed  burn,  
respec t ive ly .  

The s t e p  s i z e s  f o r  t h e  per turbat ions of t he  independent v a r i a b l e s ,  

LO1 Polynomial Simulation 

I n  t h e  formulation of log ic  fo r  an LO1 subprocessor f o r  t h e  Real-Time 
Computer Complex (RTCC) , one must analyze many poss ib le  a l t e r n a t i v e s .  F i r s t  
of a l l ,  a decis ion must be made concerning t h e  type of  burn s imulat ion t o  be  
u t i l i z e d  i n  var ious setups of t h e  t a rge t ing  log ic .  The advantages and 
disadvantages of an in t eg ra t ed  b u r n  are r e a d i l y  apparent,  i n  f a c t  it 
i s  p rec i se ly  t h e  computer t i m e  involved i n  t h i s  i n t eg ra t ed  burn t h a t  neces- 
sitates t h e  using of a conic or a polynomial s imulat ion when feasible.  

The LO1 polynomial simulation performs t h e  burn impulsively a t  t h e  

Thus, by 
node between t h e  LPO and approach hyperbola. 
page. ) The polynomials provide a Ah, AT, and AV f o r  t h e  burn,  
knowing t h e  geometry of t h e  approach hyperbola and the  des i red  LPO, it 
i s  necessary only t o  f i n d  t h e  nodal pos i t i on  on t h e  approach hyperbola,  
s u b t r a c t  Ah i n  a l t i t u d e  ( t h e  so-called "height drop") and add AT i n  t i m e  
t o  ob ta in  t h e  LPO. The r e s u l t a n t  c i r cu la r  parking o r b i t  c lo se ly  approx- 
imates t h a t  obtained by in t eg ra t ing  t h e  LO1 maneuver. However, t he  
polynomials assume a constant  value of c = 1 f o r  t h e  t h r u s t i n g  maneuver 
and, thus , a variable c cannot be simulated. 

(See f igu re  on t h e  following 

LO1 Integrated Burn Simulation 

There w i l l  e x i s t ,  i n  t h e  real-time computation of t h e  LO1 maneuver, 
cases  whereby t h e  H 

Since the  polynomials presuppose a value of c = 1, it has been hypothesized 
t h a t  by "freeing up" t h i s  constant ,  t h e  co r rec t  burnout a l t i t u d e  could 
be bought a t  t h e  expense of more LO1 AV and a higher  or lower ( than  one) 

could not be achieved i n  the  LO1 polynomial s imulat ion.  
BO 
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LUNAR 
PARKING 
ORBIT 

NODE (POLYNOMIAL 
BURN SIMULATION 
APPLIED HERE) 

REAL WORLD BURN ARC - 
RESULTS OF THIS BURN 
ARE SIMULATED BY T H E  
POLYNOMIALS 

APPROACH HYPERBOLA 

value of c .  The purpose of t h i s  portion of t h e  study w a s  t o  a s c e r t a i n  
the  e f f e c t  of c i n  these  cases.  The implicat ions f o r  real-time appl ica t ions  
a re  apparent;  while i n  the  polynomial mode the re  e x i s t s  only one so lu t ion  
t h a t  w i l l  pass over the  s i te  with the correct Y 

t h e  in t eg ra t ed  mode allows a family of so lu t ions .  This lends f l e x i b i l i t y  
t o  real-t ime planning. 

(because of c = l), LLS 

The bas i c  philosophy t h a t  permeated the  LO1 polynomial s imulat ion;  
i . e .  , get  t h e  H and minimize miss a t  t he  s i t e ,  w i l l  be observed i n  the  

in t eg ra t ed  mode. 
BO 

The Independent Variable Array 

The following s e t  of independent var iab les  were u t i l i z e d  t o  compute 

The ATlp, first guess was obtained from the  summary page of 

t h e  t a r g e t  vector  (90" from the  node) f o r  LOI: 

c ,  TIGN. 
a converged polynomial run; €IN w a s  taken from the  osculat ing elements a t  

t h e  s tar t  of lunar  debocst; AY was t h e  a lgebra ic  d i f fe rence  between 

'BO and 'Start MI;  

ATlst pass, €IN, A Y N ,  

N 
I G N  c w a s  nominally first guessed as one and T 

w a s  computed using t i m e  a t  the  node and t h e  "back-up 
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equation". ON, A Y N ,  and t h e  c e n t r a l  angle from t h e  node t o  t h e  t a r g e t  

vector f ixed  t h e  parking o r b i t  with respec t  t o  t h e  approach hyperbola. 
TIGN w a s  used t o  c o n t r o l  YLLs while c w a s  u t i l i z e d  t o  ob ta in  t h e  co r rec t  

HBO 

A t  f irst  glance t h e  use of both TIGN and tIN seems t o  be over-defining 

t h e  problem; b u t ,  as it tu rns  out,  both a r e  needed t o  he lp  t h e  i t e r a t o r  
converge on an optimum so lu t ion .  This i m p l i c i t l y  means t h a t  by keeping 
8 

work. 

on as an a c t i v e  va r i ab le  redefines t h e  t a r g e t  LPO and he lps  t h e  program N 

RESULTS 

The Polynomial Simulation 

Severa l  observations were made during t h e  study of t h e  polynomial 
simulations.  It w a s  found t h a t ,  i f  t h e  va r i ab le  t o  be optimized has too 
l a r g e  a weight a t  t h e  beginning of t h e  optimize mode, t h e  Class I v a r i a b l e  
(HBo) i s  driven away from a solut ion.  This problem can be a l l e v i a t e d  by 

t h e  following procedure: e i t h e r  t i g h t e n  t h e  to l e rance  on HBO ( e . g . ,  t o  

- +0.1 n.  m i . )  or mult ip ly  t h e  i n t e r n a l l y  computed weight on t h e  v a r i a b l e  
t o  be optimized (4LLs) by a f ac to r  o f ,  s ay ,  0.01. The l a t t e r  method w a s  

chosen f o r  t h e  optimum s t e p  size/tolerance/weight s e t  because t h e  0.1-n. m i .  
t o l e rance  might cause nonconvergence on t r a j e c t o r i e s  with a t r u e  optimum 
o f ,  say,  HBO = 80.247 n. m i .  However, 

even with t h i s  procedure, t h e  question now a r i s e s :  
i n  t h e  optimize mode through improper weighting techniques? 
answer appears t o  be y e s ,  t h i s  has far reaching impl ica t ions  f o r  mission 
planning. 

(See nominal case 4 i n  t a b l e  I V ( a ) ) .  

Do you l o s e  so lu t ions  
Since t h e  

Another minor problem noted i n  using t h e  programs w a s  t h a t  t h e  shut- 
o f f  c r i t e r i a  i n  t h e  optimize mode seems i n e f f i c i e n t .  
t o l e r a b l e  f o r  p r e f l i g h t  ana lys i s  ; bu t  , f o r  real-t ime app l i ca t ions  , it 
might not suf f ice .  After a ca re fu l  study of t h e  t y p i c a l  behavior of t h e  
va r i ab le  XLAMBDA throughout t h e  optimize i t e r a t i o n s  ( f i g .  l), it seems 
apparent t h a t  a shutoff c r i t e r i o n  t o  te rmina te  computations a f t e r  a 
"plateau" i s  reached might be f eas ib l e .  I n  o the r  words , a f t e r  approxi- 
mately e igh t  i t e r a t i o n s ,  t h e  problem i s  e s s e n t i a l l y  optimized (a t  l e a s t  t o  
two s i g n i f i c a n t  p l aces )  ; t h e  remainder of t h e  optimize procedure i s  
concerned with small adjustments i n  each of t h e  dependent va r i ab le s .  
This problem w a s  p a r t i c u l a r l y  acute f o r  t h i s  study s ince  most of t h e  
work w a s  done optimizing on conditions t h e  i t e r a t o r  could achieve; there-  
f o r e ,  t h e  r e s i d u a l  vector upon entering t h e  optimize mode w a s  s o  s m a l l  

I ts  opera t ion  i s  
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t h a t  r$LLs became weighted t o o  heavily and HBO w a s  drawn out .  

was designed t o  optimize on conditions it could not a t t a i n .  

The i t e r a t o r  

Early i n  t h e  study it became apparent t h a t  yLoI w a s  a highly s i g n i f i c a n t  

independent parameter for t h e  LOI maneuver. I f  t h i s  parameter i s  allowed 
t o  move f r e e l y  i n  t h e  search procedure, sometimes a postper icynthion 
so lu t ion  may be found where no prepericynthion e x i s t s ;  i . e . ,  

pass from a negative value through zero t o  a p o s i t i v e  value.  Allowing 
t o  move f r e e l y  has an undesirable e f f e c t ;  a l s o ,  t h i s  va r i ab le  w i l l  

t ake  the  p lace  of c i n  manipulating HBO and/or r$LLs i n  t h i s  i n t eg ra t ed  

burn. 

Y L O I  may 

YLOI 

Midway i n  t h e  ana lys i s  several  f a c t o r s  which inf luence t h e  a t t a i n -  
ment or nonattainment of a Class I11 va r i ab le  became apparent:  

(1) Tolerances on t h e  Class I and Class I1 va r i ab le s .  

( 2 )  I n t e r n a l l y  computed weight on t h e  Class I11 var iab le .  

(3) Weights on the  Class 11 ' s .  

( 4 )  Weights and s t ep  s i z e s  on t h e  independent var iab les .  

These s ta tements  may seem innocuous at f irst  glance,  but  they a l l  

It i s  obvious t h a t ,  f o r  any given t r a j e c t o r y ,  you may or may 
play a major p a r t  i n  s e l ec t ing  the  optimum set of cons t r a in t s  f o r  t h e  LO1 
problem. 
not  a t t a i n  t h e  Class I11 va r i ab le ,  depending e n t i r e l y  upon t h e  s e l e c t i o n  
of t h e  f ac to r s  l i s t e d  above. Therefore, a c e r t a i n  amount of uncertainty 
w i l l  always e x i s t  even with a so-called "optimum" s e t  of cons t r a in t s .  

Another i n t e r e s t i n g  f a c t  w a s  uncovered i n  t h i s  study. Through a 
programing e r r o r  t he  t r a j e c t o r y  was propagated from HBO t o  t h e  f i r s t  pass 

over t he  s i t e  i n  the  in tegra ted  mode; t h i s  took approximately 3 minutes 
pe r  i t e r a t i o n .  This has real-time s ign i f i cance ;  e i t h e r  some ca l ib ra t ed  
method, i . e . ,  lunar  A E G ,  EMPERT, e t c . ,  or a conic propagation must be 
used f o r  computer time considerations.  

Much controversy w a s  aroused due t o  t h e  comparatively t i g h t  t o l e r -  
ances of +l.Oo on Y as a Class I1 va r i ab le .  It w a s  argued, and jus- 

t i f i a b l y  s o ,  t h a t  no matter  where the search procedure s t a r t e d ,  it would 
quickly h i t  a bound, lock,  unlock, h i t  t h e  bound aga in ,  e t c .  , thereby 
hampering attainment of t he  optimized so lu t ion .  One way t o  avoid t h e  
problems crea ted  by the  t i g h t  YLLs bounds is  t o  s t a r t  t he  case i n  t h e  

- LLS 
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optimize mode so t h a t  t h e  "begin moving'' c r i t e r i a  i s  never seen. The 
moral of t h i s  s t o r y  i s  t o  e i ther .  (1) se t  loose  to le rances  on Class I1 
va r i ab le s ,  or ( 2 )  start  i n  t h e  optimize mode where t h e  best poss ib l e  
so lu t ion  i s  a t t a i n e d  wi th in  t h e  r e s t r i c t e d  bounds. This problem does 
not occur o f t en ,  however, and it i s  thought t h a t  t h e  optimum set  of 
cons t r a in t s  l i s t e d  before  w i l l  prevent i t s  occurrence i n  most cases .  

The Integrated Burn Simulation 

At ten t ion  i s  d i r ec t ed  t o  t a b l e  I V .  For t h e  a t t a i n a b l e  cases ,  
s e v e r a l  items of note  become apparent. The prepericynthion burns 
(cases  1 and 2)  are extremely comparable; even such inac t ive  va r i ab le s  as 
Mass after LM separa t ion  and AV are c lose  between t h e  in t eg ra t ed  and LO1 
polynomial modes. With case 3 (postper icynthion burn) , however, t h e  mass 
values differ by some 87 l b ;  b u t ,  the a c t u a l  plane change made when using 
t h e  i n t e g r a t e d  burn w a s  1.2' g rea te r  than t h e  polynomial case and c w a s  
reduced t o  0.8234. 
locked t h e  azimuth i n  the  -86.0' boundary; t h u s ,  it was necessary t o  
change c t o  obta in  t h e  des i r ed  end condi t ions.  Why the  in t eg ra t ed  solu- 
t i o n  YLLs should be so  d i f f e r e n t  f rom t h e  polynomial YLLs when t h e  o the r  

t h r e e  cases a r e  so  c lose  i s  not now known. However, a t  t h i s  stage i n  
LO1 ana lys i s  , it is  f e l t  t h a t  a c of 0.8234 and a 1.2' d i f f e rence  i n  
plane change accounts f o r  t h e  mass d i f fe rence .  Note t h a t  t h i s  essent i -  
a l l y  means t h a t  t h e  i t e r a t o r  found one of t h e  afore-mentioned "family" 
o f  so lu t ions  by changing c and using more f u e l .  Case 4 ( a  burn essen- 
t i a l l y  a t  per icynthion)  shows reasonable comparison between t h e  in t eg ra t ed  
and polynomial burns ,  although not  q u i t e  as good as cases 1 and 2. 

This occurred because t h e  in t eg ra t ed  s imulat ion 

Table IV(b)  shows t h e  e f f e c t  of c much more markedly. 

N '  

Case 1 adjus ted  
on AY and c t o  come c l o s e s t  t o  the des i r ed  end condi t ions.  The i tera- 

t o r  converged on a I$ i n  t h e  in tegra ted  burn mode t h a t  w a s  not t h e  

des i r ed  value.  It i s  assumed a t  t h i s  t i m e  t h a t  t h i s  w a s  caused by weight- 
ing  and s t e p  s i z e  problems s ince  there  i s  no phys ica l  reason why t h e  
des i r ed  value should not be obtained i n  t h e  extra freedom of  t h e  in t e -  , 

gra t ed  burn. The advantages of t h e  in t eg ra t ed  burn are more v iv id ly  
i l l u s t r a t e d  i n  case 2. I n  t h e  polynomial mode, a so lu t ion  d id  not  e x i s t  
f o r  t h i s  t r a j e c t o r y  under t h e  given cons t r a in t s .  However, by manipulating 
c ,  t h e  i t e r a t o r  w a s  able t o  converge on exac t ly  t h e  required I$,,,, using 

58.6 l b  more of fuel.  

would have been missed by b e t t e r  than 0.6' , which would undoubtedly r equ i r e  
a. maneuver LPO. 
t h i s  case.  

LLS 

LLS Using only the polynomial burn t h e  des i red  I$ 

Therefore,  t h e  58.6 l b  of  f u e l  saved an LPO maneuver i n  
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The r e s u l t s  tabula ted  under case 4 show t h a t  sometimes even t h e  e x t r a  
degree of fYeedom of t h e  in t eg ra t ed  burn i s  of no p r a c t i a l  he lp .  This 
case with t h e  in t eg ra t ed  burn w a s  not converged; it w a s  terminated on an 
i t e r a t i o n  count. The case w a s  not r e run  s ince  t h e  r e s u l t s  then  i l l u s -  
trated t h e  poin t  and running t h e  case u n t i l  it converged would t a k e  more 
computer time than  t h e  r e s u l t s  would be worth. Because of t h e  s m a l l  
plane change ( l e s s  than 1') t h e  node between t h e  approach hyperbola and 
t h e  LPO assoc ia ted  with t h e  maximum allowable Y s h i f t e d  d r a s t i c a l l y  

as +,,, w a s  changed. 

at t h e  node t h a t  t h e  f u e l  used would be  unacceptable. Notice a l s o  how 
uneconomical l a r g e  values of c a r e .  This is  a case where a two-burn LO1 
i s  most economical. The same s o r t  of t h ing  was t r i e d  i n  case 3. The 

The polynomial simu- 

l a t i o n  was only ab le  t o  reach 1.086~ whereas t h e  in t eg ra t ed  burn w a s  ab l e  
t o  a t t a i n  t h e  des i red  value.  However, t h e  mass d i f fe rence  w a s  so  g r e a t  
t h a t  it could not be explained. Consequently, t hese  r e s u l t s  were not 
included i n  t h e  t abu la t ed  data. 
discrepancy. 

LLS 
Consequently, s o  much a l t i t u d e  drop would be requi red  

w a s  increased t o  1.62~~ as the des i r ed  value.  
4LLS 

An attempt i s  being made t o  expla in  t h i s  

CONCLUDING REMARKS 

Several  observations were noted during t h i s  study. It w a s  found 
t h a t  i n  t h e  in t eg ra t ed  mode, convergence became much more dependent on 
the  s t e p  s i z e s  given t h e  independent va r i ab le s  ( e spec ia l ly  f o r  case 2,  
a h igh  A Y  case and case 6 ,  an "at" per icynthion burn) .  
weights,  t o l e rances ,  and s t e p  s i z e s  shown i n  t a b l e  I11 do no t ,  t h e r e f o r e ,  
represent  a "true" optimum s e t  as does t a b l e  I1 f o r  t he  polynamials. 
More refinement work needs t o  be  done i n  t h i s  a r ea .  

The s e t  of 

It w a s  found t h a t  a f u l l y  optimized in t eg ra t ed  burn could genera l ly  
be run f o r  somewhat l e s s  than 3 minutes on the  1108 while t h e  polynomials 
would run i n  a few seconds. However, t h e  in t eg ra t ed  mode o f f e r s  t h e  
unique advantage of having c t o  use as a means of picking a member of 
t h e  family of so lu t ions  a t  d i f f e r e n t  places on t h e  approach hyperbola 
at t h e  expense of more AV. 

Note t h a t  t h e  "optimum" s e t  of cons t r a in t s  mentioned above could be 

LLS by a improved by mult iplying t h e  i n t e r n a l l y  computed weight on I$ 

s c a l i n g  f ac to r  t o  insure  t h a t  so lu t ions  a r e  not driven out i n  t h e  optimize 
mode. 
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Case 

TABLE I.- DESCRIPTION OF NOMINAL LOI'S 

Date 
~~ 

October 26, 1968 

February 4, 1968 

February 4, 1968 

December 1, 1968 

Time, 
hr G . m . t .  

3.75 

20.31 

12.94 

9.98 

Description 

prepericynthion; approximately lo 
plane change 

prepericynthion; large plane change 

postpericynthion; large plane 
change 

at pericynthion; coplanar 



11 

V a r  i ab 1 e Octal  Tolerances Weights 
s t e p  s i z e  

917574 

917564 

917554 

1 '*lst pass 
-- 
-- 
-- 

'"LO1 

yLoI  

0.001 

0.1 

4.0 

\: 

-- 
-- 
-- 
1.0 

J 

1 *BO 
~ L L S  

'LLS 

"LLS 

Dependent var iab les  

+0.5 n. m i .  

%sed a weight f a c t o r  of 0.01 on t h e  va r i ab le  t o  be optimized 

%LS) 

t 
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. 
Variable Octal T o l e r a n c e s  

step s i z e  
Weights 

TABLE 111.- OPTIMUM STEP SIZES,  TOLERANCES, AND WEIGHTS 

FOR THE INTEGRATED BURN 

ATlst pass 

AyN 

eN 

T~~~ 

C 

HBO 

$LLS 

‘LLS 

‘LLS 

$17554 

$17604 

$17604 

$17624 

$17604 -- 

D e p e n d e n t  variables 

0.001 

1.0 

1.0 

0.015625 

0.001 

I I -- - W.5  n. m i .  I -- 
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